An Improved Quantum-behaved Particle Swarm Optimization Algorithm Based on Chaos Theory Exerting to Particle Position

نویسندگان

  • Pan Dazhi
  • Yang Shuang
چکیده

In this paper, we propose an improved quantum-behaved particle swarm optimization (QPSO), introducing chaos theory into QPSO and exerting logistic map to every particle position X(t) at a certain probability. In this improved QPSO, the logistic map is used to generate a set of chaotic offsets and produce multiple positions around X(t). According to their fitness, the particle's position is updated. In order to further enhance the diversity of particles, mutation operation is introduced into and acts on one dimension of the particle's position. What's more, the chaos and mutation probabilities are carefully selected. Through several typical function experiments, its result shows that the convergence accuracy of the improved QPSO is better than those of QPSO, so it is feasible and effective to introduce chaos theory and mutation operation into QPSO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS

In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...

متن کامل

Improved Quantum-behaved Particle Swarm Optimization Algorithm with Memory and Singal Step Searching Strategy for Continuous Optimization Problems

Quantum-behaved particle swarm optimization (QPSO) algorithm is a global convergence guaranteed algorithms, which has been applied widely for continuous optimization problems. In this paper, we propose an improved quantum-behaved particle swarm optimization with memory according to the means of best position of particles and using sigal step seaching strategy for sovle the multidimentional prob...

متن کامل

Dynamic Network Traffic Flow Prediction Model based on Modified Quantum-Behaved Particle Swarm Optimization

This paper aims at effectively predicting the dynamic network traffic flow based on quantum-behaved particle swarm optimization algorithm. Firstly, the dynamic network traffic flow prediction problem is analyzed through formal description. Secondly, the structure of the network traffic flow prediction model is given. In this structure, Users can used a computer to start the traffic flow predict...

متن کامل

Parameter Estimation of Chaotic Dynamical Systems Using Quantum-behaved Particle Swarm Optimization Based on Hybrid Evolution

In this study, a quantum-behaved particle swarm optimization (QPSO) based on hybrid evolution (HEQPSO) approach is proposed to estimate parameters of chaotic dynamic systems, in which the proposed HEQPSO algorithm combines the conceptions of genetic algorithm (GA) and adaptive annealing learning algorithm with the QPSO algorithm. That is, the mutation strategy in GA is used for conquering prema...

متن کامل

An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position

Keywords: PSO QPSO Mean best position Weight parameter WQPSO a b s t r a c t Quantum-behaved particle swarm optimization (QPSO) algorithm is a global convergence guaranteed algorithms, which outperforms original PSO in search ability but has fewer parameters to control. In this paper, we propose an improved quantum-behaved particle swarm optimization with weighted mean best position according t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014